Rabu, 28 April 2010

Fungsi Implisit

Dalam matematika, sebuah fungsi implisit adalah fungsi yang mana variabel takbebas tidak diberikan secara "eksplisit" dalam bentuk variabel bebas. Menyatakan sebuah fungsi f secara eksplisit adalah memberikan cara untuk menentukan nilai keluaran dari sebuah fungsi y dari nilai masukan x:

y = f(x).

Sebailknya, sebuah fungsi adalah implisit apabila nilai y didapatkan dari x dengan memecahkan persamaan dalam bentuk:

R(x,y) = 0

Dengan kata lain, sebuah variabel dapat menentukan variabel lainnya, namun kita tidak diberikan rumus eksplisit untuk suatu variabel dalam bentuk variabel lainnya.

Secara formal, sebuah fungsi f:X→Y dikatakan sebagai fungsi implisit apabila fungsi tersebut memenuhi persamaan:

R(x,f(x)) = 0

untuk semua x∈X, dengan R adalah fungsi pada perkalian Cartesian X × Y.


Fungsi implisit sering berguna dalam keadaan yang tidak memudahkan buat memecahkan persamaan dalam bentuk R(x,y) = 0 untuk y yang dinyatakan dalam x. Bahkan bila memungkinkan untuk menyusun ulang persamaan ini untuk memperoleh y sebagai fungsi eksplisit f(x), hal ini boleh jadi tidak diinginkan, karena pernyataan f jauh lebih rumit dari pernyataan R. Dalam keadaan lain, persamaan R(x,y) = 0 mungkin tidak dapat menyatakan suatu fungsi sama sekali, dan sebenarnya mendefinisikan fungsi bernilai ganda. Bagaimanapun, dalam banyak keadaan, bekerja dengan fungsi implisit masih dimungkinkan. Beberapa teknik dari kalkulus, seperti turunan, dapat dilakukan dengan relatif mudah menggunakan fungsi implisit.

Fungsi Riil Kontinu

Misalkan kita memiliki fungsi yang memetakan bilangan riil kepada bilangan riil, dengan domainnya merupakan suatu selang, seperti fungsi h dan M di atas. Fungsi seperti ini dapat dilambangkan dengan grafik dalam bidang Cartesius. Secara kasar dapat dikatakan fungsi tersebut kontinu bila grafik itu berupa kurva tunggal tidak terputus, tanpa "lubang" atau "lompatan"

Untuk lebih cermat, kita mengatakan bahwa fungsi f kontinu pada suatu titik c bila dua persyaratan berikut terpenuhi:

* f(c) harus terdefinisi (c termasuk dalam domain f)
* limit f(x) saat x mendekati c baik dari kiri maupun dari kanan ada, dan harus sama dengan f(c).

Kita menyebut fungsi tersebut kontinu di semua titik atau kontinu saja bila fungsi tersebut kontinu di semua elemen dalam domainnya. Lebih umum lagi, kita menyebut suatu fungsi kontinu dalam sebarang himpunan bagian dari domainnya bila fungsi tersebut kontinu di semua titik dalam himpunan bagian tersebut. Apabila kita mengatakan suatu fungsi kontinu, kita biasanya bermaksud bahwa fungsi tersebut kontinu untuk semua bilangan riil.

Fungsi Kontinu

Fungsi kontinu dalam matematika adalah fungsi, yang bila dijelaskan secara intuitif, perubahan kecil dalam masukannya berakibat perubahan kecil pula pada keluaran. Bila tidak demikian, fungsi tersebut dikatakan diskontinu. Fungsi kontinu dengan fungsi invers kontinu pula disebut bikontinu. Gagasan intuitif kekontinuan dapat diberikan oleh pernyataan bahwa fungsi kontinu adalah fungsi yang grafiknya dapat digambar tanpa mengangkat kapur dari papan tulis.

Kekontinuan fungsi merupakan salah satu konsep inti topologi.

Sebagai contoh fungsi kontinu, perhatikan fungsi h(t), yang memerikan tinggi bunga yang sedang tumbuh pada waktu t. Fungsi ini kontinu. Terdapat diktum dalam fisika klasik yang menyatakan bahwa di alam semuanya kontinu. Sebaliknya, jika M(t) melambangkan jumlah uang di sebuah rekening bank pada waktu t, fungsi ini melompat ketika uang disimpan atau ditarik. Karena itu fungsi M(t) diskontinu.

Teorema Dasar Kalkulus

Teorema dasar kalkulus menjelaskan relasi antara dua operasi pusat kalkulus, yaitu pendiferensialan (differentiation) dan pengintegralan (integration).

Bagian pertama dari teorema ini, kadang-kadang disebut sebagai teorema dasar kalkulus pertama, menunjukkan bahwa sebuah integral taktentu[1] dapat dibalikkan menggunakan pendiferensialan.

Bagian kedua, kadang-kadang disebut sebagai teorema dasar kalkulus kedua, mengijinkan seseorang menghitung integral tertentu sebuah fungsi menggunakan salah satu dari banyak antiturunan. Bagian teorema ini memiliki aplikasi yang sangat penting, karena ia dengan signifikan mempermudah perhitungan integral tertentu.

Penyataan yang pertama kali dipublikasikan dan bukti matematika dari versi terbatas teorema dasar ini diberikan oleh James Gregory (1638-1675)[2]. Isaac Barrow membuktikan versi umum bagian pertama teorema ini, sedangkan anak didik Barrow, Isaac Newton (1643-1727) menyelesaikan perkembangan dari teori matematika di sekitarnya. Gottfried Leibniz (1646–1716) mensistematisasi ilmu ini menjadi kalkulus untuk kuantitas infinitesimal.

Teorema dasar kalkulus kadang-kadang juga disebut sebagai Teorema dasar kalkulus Leibniz atau Teorema dasar kalkulus Torricelli-Barrow.