Rabu, 28 April 2010

Fungsi Riil Kontinu

Misalkan kita memiliki fungsi yang memetakan bilangan riil kepada bilangan riil, dengan domainnya merupakan suatu selang, seperti fungsi h dan M di atas. Fungsi seperti ini dapat dilambangkan dengan grafik dalam bidang Cartesius. Secara kasar dapat dikatakan fungsi tersebut kontinu bila grafik itu berupa kurva tunggal tidak terputus, tanpa "lubang" atau "lompatan"

Untuk lebih cermat, kita mengatakan bahwa fungsi f kontinu pada suatu titik c bila dua persyaratan berikut terpenuhi:

* f(c) harus terdefinisi (c termasuk dalam domain f)
* limit f(x) saat x mendekati c baik dari kiri maupun dari kanan ada, dan harus sama dengan f(c).

Kita menyebut fungsi tersebut kontinu di semua titik atau kontinu saja bila fungsi tersebut kontinu di semua elemen dalam domainnya. Lebih umum lagi, kita menyebut suatu fungsi kontinu dalam sebarang himpunan bagian dari domainnya bila fungsi tersebut kontinu di semua titik dalam himpunan bagian tersebut. Apabila kita mengatakan suatu fungsi kontinu, kita biasanya bermaksud bahwa fungsi tersebut kontinu untuk semua bilangan riil.

Tidak ada komentar:

Posting Komentar